- 1. Suppose an object moves with position function s = f(t).
 - a. Write an expression for the average velocity of the object in the time interval from t=a to t=a+h.
 - b. Write an expression for the instantaneous velocity at time t=a.
- 2. Find an equation of the line tangent to the curve at the given point.

a.
$$y = 1 - 2x - 3x^2$$
 (-2,-7)

b.
$$y = \frac{1}{x^2}$$
 (-2, $\frac{1}{4}$)

- 3. If a ball is thrown in to the air with a velocity of 40ft/s, its height in feet after t seconds is given by $y = 40t 16t^2$. Find the velocity when t=2.
- 4. If an arrow is shot upward on the moon with a velocity of 58m/s, its height in meters after t seconds is given by $H = 58t 0.83t^2$.
 - a. Find the velocity of the arrow when t=a.
 - b. Find the velocity of the arrow after 1 second.
 - c. When will the arrow hit the moon?
 - d. With what velocity will it hit the moon?

5. The displacement in meters of a particle moving in a straight line is given by the equation of motion $s = 4t^3 + 6t + 2$, where t is measured in seconds. Find the velocity of the particle at times t=a, t=1, t=2 and t=3.

- 6. The displacement in meters of a particle moving in a straight line is given by $s = t^2 8t + 18$, where t is measured in seconds.
 - a. Find the average velocities over the following time intervals:
 - i. [3,4]
 - ii. [4,5]
 - b. Find the instantaneous velocity when t=4.
- 7. Dominic dropped a water balloon out of the science building window 6 meters above the ground. What is the velocity at .5 sec? With what velocity will it hit the ground?